Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36837263

RESUMO

Segmented thermoplastic polyurethanes (PU) were synthetized using a polycarbonatediol macrodiol as a flexible or soft segment with a molar mass of 2000 g/mol, and different diisocyanate molecules and 1,4-butanediol as a rigid or hard segment. The diisocyanate molecules employed are 3,3'-Dimethyl-4,4'-biphenyl diisocyanate (TODI), 4,4'-diphenylmethane diisocyanate (MDI), 4,4'-Methylenebis(phenyl isocyanate) 1-isocyanato-4-[(4-phenylisocyanate)methyl]benzene and 1-isocyanate-4-[(2-phenylisocyanate) methyl]benzene (ratio 1:1) (MDIi), isophorone diisocyanate (IPDI), and hexamethylene diisocyanate (HDI). The polyurethanes obtained reveal a wide variation of microphase separation degree that is correlated with mechanical properties. Different techniques, such as DSC, DMA, and FTIR, have been used to determine flexible-rigid segment phase behavior. Mechanical properties, such as tensile properties, Shore D hardness, and "compression set", have been determined. This work reveals that the structure of the hard segment is crucial to determine the degree of phase miscibility which affects the resulting mechanical properties, such as tensile properties, hardness, and "compression set".

2.
Polymers (Basel) ; 11(12)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31756912

RESUMO

Segmented thermoplastic polyurethanes (PUs) were synthetized using macrodiols with different functional groups (carbonate, ester, and /or ether) as a segment with a molar mass of 1000 and 2000 g/mol, and 4,4'-diphenylmethane diisocyanate (MDI) and 1,4-butanediol as a rigid segment. The polyurethanes obtained reveal a wide variation of microphase separation degree that is correlated with mechanical properties and retention of tensile properties under degradation by heat, oil, weather, and water. Different techniques such as differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), Fourier transform infrared (FTIR), and synchrotron small-angle X-ray scattering (SAXS) were used to determine rigid-flexible segments' phase behaviour. Retention of tensile properties determines the stability of the samples under different external factors. This work reveals that pure polycarbonate-based macrodiols induce the highest degree of phase miscibility, better tensile properties, hardness shore A, and retention of tensile properties under external agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...